News – Breakthrough in study of fish kidney disease related to climate change

Wednesday, 24 February 2021

New research could pave the way for the development of drugs and vaccines to treat a disease that is rapidly emerging in wild and farmed fish in the UK, Europe and North America, as a result of climate change.

The study, which was carried out by experts from the University of Aberdeen in collaboration with the University of Nottingham and the Natural History Museum and is published in Scientific Reports, is the most extensive analysis carried out on the parasite which causes Proliferative Kidney Disease (PKD) in fish such as trout.

PKD is caused by a member of an unusual group of parasites called myxozoans that are related to jellyfish, sea anemones, and corals. These very simple parasites, in contrast to most other living things, have evolved from a much more complex ancestor.

Myxozoan parasites live inside invertebrates, such as certain kinds of worms or animals called bryozoans that live in colonies. Also, as part of their life cycle, they will also exist in some kinds of vertebrates too.

Only a minority of these parasites go on to cause serious disease in animals, such as fish, including the parasite that causes PKD, called Tetracapsuloides bryosalmonae. Rising freshwater temperatures are leading to an increase in disease instances caused by these parasites.

Researchers carrying out the study, have undertaken mass sequencing of the parasite’s genes using both infected hosts in its lifecycle. In doing so, they have made major in-roads towards understanding how the parasite interacts with and exploits each host. This has provided important insights into the kind of parasite molecules that could be targeted therapeutically.

Dr Holland said: “Myxozoan diseases, especially PKD, are linked to increasing freshwater temperatures with climate change being a major factor in increased disease occurrence and severity. This has, indeed, been the case within the UK, Europe and North America, impacting fisheries and aquaculture.

“Currently, there are no licensed drugs or vaccines available to control PKD and because this parasite is so fragile, there are no available means to isolate and maintain it for laboratory studies, independently of either host in its lifecycle.

Related:  News - Food Innovation Centre help make Bird Dust product fly

“We can isolate and sequence the parasite from its invertebrate host, but this is more difficult when the parasite is infecting the fish host. Parasite molecules that could be important therapeutic targets may be missed if we don’t obtain parasite gene sequences from both hosts. 

Dr. Hanna Hartikainen from the School of Life Sciences at the University of Nottingham emphasised the importance of studying parasites across the entire life-cycles

Incorporating transcriptomic data from both invertebrate and vertebrate host may provide novel avenues to discover molecules useful for vaccine development. Our study discovered molecules that are almost exclusive to one of the two hosts in the parasite’s lifecycle. This provides a strong indicator of the importance of such molecules in safeguarding parasite survival and exploiting the host.”

Dr. Hanna Hartikainen from the School of Life Sciences at the University of Nottingham

Prof Okamura said: Our study also paves the way towards understanding how genes may support development of highly simplified parasites. For the first time in myxozoans we have identified homeobox domain-containing proteins that play a role in development in other animals, including in jellyfish relatives, and thus may promote development in primitive myxozoans. Such genes may have been lost in the more advanced myxozoans that have been studied to date.

Parasite spores

The team also found that the molecules required for the parasite to thrive, such as fat digesting proteins, were highly abundant in fish, which they believe may explain what triggers disease symptoms in fish hosts.

Dr Holland continued: “This work provides an important foundation for subsequent studies to further understand why a fish’s immune system is unable to ward off the parasite, as well as in understanding its metabolism and development.

“This has the potential to lead to the development of drugs and vaccines to help control PKD in the future. Indeed, we have already used the data to inform on studies into vaccine development and have uncovered a molecule the parasite uses to attack the fish immune system, in a way that is completely novel to animal parasites”.

Related:  News - New study explores attitudes to putting edible insects on the menu

Story credits

This study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC), a Swiss National Science Foundation Sinergia, EU 2020 ParaFishControl research programme, and the Natural History Museum, London.

 

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email  pressoffice@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors:

The University of Nottingham is a research-intensive university with a proud heritage, consistently ranked among the world’s top 100. Studying at the University of Nottingham is a life-changing experience and we pride ourselves on unlocking the potential of our students. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia – part of a globally connected network of education, research and industrial engagement. The University’s state-of-the-art facilities and inclusive and disability sport provision is reflected in its status as The Times and Sunday Times Good University Guide 2021 Sports University of the Year. We are ranked eighth for research power in the UK according to REF 2014. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner – locally and globally. Alongside Nottingham Trent University, we lead the Universities for Nottingham initiative, a pioneering collaboration which brings together the combined strength and civic missions of Nottingham’s two world-class universities and is working with local communities and partners to aid recovery and renewal following the COVID-19 pandemic.

More news…


More from: | Category: University News